Well–posedness of dispersion managed nonlinear Schrödinger equations

نویسندگان

چکیده

We prove local and global well–posedness results for the Gabitov–Turitsyn or dispersion managed nonlinear Schrödinger equation with a large class of nonlinearities arbitrary average on L2(R) H1(R) zero non–zero dispersions, respectively. Moreover, when is non–negative, we show that set ground states orbitally stable. This covers case non–saturated saturated polarizations yields, nonlinearities, first proof orbital stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Local Wellposedness Results for Nonlinear Schrödinger Equations below L

In this paper we prove some local (in time) wellposedness results for non-linear Schrödinger equations ut − i∆u = N (u, u), u(0) = u0 with rough data, that is, the initial value u0 belongs to some Sobolev space of negative index. We obtain positive results for the following nonlinearities and data:

متن کامل

Of Nonlinear Schrödinger Equations

The authors suggest a new powerful tool for solving group classification problems, that is applied to obtaining the complete group classification in the class of nonlinear Schrödinger equations of the form iψt +∆ψ + F (ψ,ψ ∗) = 0.

متن کامل

Dynamics of Nonlinear and Dispersion Managed Solitons

Qudsia Quraishi,* Steven T. Cundiff, Boaz Ilan, and Mark J. Ablowitz Department of Physics, University of Colorado, National Institute of Standards and Technology, and JILA, Boulder, Colorado 80309-0440, USA JILA, National Institute of Standards and Technology, and the University of Colorado, Boulder, Colorado 80309-0440, USA Department of Applied Mathematics, University of Colorado, Boulder, C...

متن کامل

Numerical study of fractional nonlinear Schrödinger equations.

Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the ...

متن کامل

Numerical Continuation for Nonlinear SchrÖdinger Equations

We discuss numerical methods for studying numerical solutions of N-coupled nonlinear Schrödinger equations (NCNLS), N = 2, 3. First, we discretize the equations by centered difference approximations. The chemical potentials and the coupling coefficient are treated as continuation parameters. We show how the predictor–corrector continuation method can be exploited to trace solution curves and su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2022.126938